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Reduction of System Order Using Power Spectral Density
Function-Generalization of Liaw’s Dispersion Analysis
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The method of model reduction based on dispersion analysis and the continued fraction is
extended to treat the system which has multiple poles or has simple or multiple poles on the
imaginary axis. Using the power spectral density function and preserving the dynamic modes
with large power contibutions, the denominator of the reduced model is obtained and its
numerator is obtained by using the continued-fraction method. This method is proved to give
better approximation to an original system through examples than other methods.
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1. Introduction

Reduction of the system order enables one to
simplify the design and analysis of high-order
linear system. The method of reduction of system
order using dispersion analysis(Liaw et al., 1986)
is known to be more prominent than other
methods(Shamash, 1975; Chen et al., 1980). In
this method, the denominator of the reduced
model is determined from the viewpoint of energy
contribution to the system output; the dynamic
modes (eigenvalues) with dominant energy contri-
butions are preserved. In order to give each
dynamic mode equal weighting, input-exciting
signals are assumed to be white noises which are
constant for frequencies. Therefore, the total
power of each dynamic mode can be obtained by
intergrating the power spectral density function
over entire frequency range. By preserving the
dynamic modes with large power, the denomina-
tor of the reduced model is obtained. Its numera-
tor can be found by using the continued-fraction
method.

The main disadvantage of this method is its
inability in treating the system with multiple
poles, or simple or multiple poles on the imagi-
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nary axis of Laplace domain. Therefore, the
method is extended to overcome its inability in
the present work.

2. Determination of the Denominator
Using Power Spectrum

To simplify the analysis, it is assumed that the
denominator of the transfer function has multiple
poles p,, p. of multiplicities s and r, respective-
ly, and other poles are distinct.

The n-th order transfer function G(s) is given
as
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The unit impulse response is obtained from Eq.

(1):
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Through Fourier transformation applied in the
case of deterministic power and energy signals, a
one-to-one mapping between time and frequency
domains is established. The power spectral den-
sity function and auto-correlation function are
related for stationary signals. If one-sided power
spectral density function is used, integration is
carried out only over positive frequencies(Bendat
et al., 1986):

Ro()= [ GuolleosCafe) df-  (3)

where R,,(r) is the auto-correlation function of
the output and G,,(f) the power spectral density
function of the output.

In particular, at r=0, we obtain

l “Cwlf) df = Rypl0). (4)

Therefore, without solving the power spectral
density function, we obtain the energy contribu-
tion of each dynamic mode. Input-exciting signals
are assumed to be white noises 7(t) in order to
give each dynamic mode equal weighting.

The response of system is
t
W= [ Gtr—vrwav. 5)

Integrating the power spectrum over frequncies
gives
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Substituting Eq. (5) into Eq. (6) produces
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where the auto-correlation of the white noise,

E{n(0)9(v)}=0,"
Note that fwt"e‘“'dtz—]l(%g, where [
0 a

means the gamma function. Eq. (7) is propagated
as follows:
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The term, which contains g, (;=1,---,m), b(i=
l,=-,#), and c(i=m+ r+1,---,n), respectively,
represents the importance of each dynamic mode.
For example, the power contributions, { PC(q,)}
and {PC(an)}, of the dynamic modes, a,(=a,/s

+p1) and an(=anm/s+ p:)™ respectively, are as
follows :
PCa) =528 (ol
& (p{’f;;,
PClan)= 5 G5ty oyt
+ B = BT Gy i
By (plip))

Neglecting the dynamic modes that have small
power contribution of all dynamic modes corre-
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sponding to a multiple pole, there is a possibility
of reducing the system order. As it were, if the
importance of the dynamic mode agn(=an/(s
+ p1)™) of a multiple pole p,; is relatively small in
comparison with that of other dynamic modes g;
(=a:/(s+p)), i=12,--,(m—1), the mul-
tiplicity of the multiple pole p, can be reduced
from s to (m—1). The relatvie importance of
each dynamic mode is estimated in terms of the
ratio of its power contribution to the total power.

Since the power contribution of a complex pole
due to Eq. (8) is a complex number which is
meaningless and also, has a complex conjugate,
its power contribution is defined as the sum for
each conjugate pair of a complex pole in order to
be a meaningful real number.

Equation (8) does not provide solutions for the
transfer function which has simple or multiple
poles at the imaginary axis of Laplace domain.
Considering the transfer function that has a
multiple pole with multiplicity » at the origin
and of which other poles are distinct, the transfer
function of this system is fractionated partially as
follows:
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Therefore, applying G’(s) that the dynamic mode
of the pole, zero, is removed, to Eq. (8) we can
find the power contribution of each dynamic
mode.

3. Determination of Nurmerator
Using Continued Fraction Method

Since it does not matter whether a pole is
simple or not in determining the numerator, we
will consider the retained dynamic modes be — p,,
— pa» -, — p- The reduced model is as follows:
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where B, ;, Bz, B1.+1 are known and B, B;,

-,B;, can be found by matching the time

moments.

Equation (1) is rewritten as

Aoyt Azas + Azss®+ -+ Agns™!

At Arzs + Arss® o+ Avnais™
(1

The continued fraction expansion of Eq. (I1)

about =0 and s=oo has the following form:
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R(s)=

G(s)=

G(s)=

The coefficients 4, are obtained from the coeffi-
cients A;, of Eq. (11) by forming a Routh

array(Bosley et al., 1973):
Aj.k=Aj—2.h+1‘——-MAj‘21}llAj’l'k“_ (13)
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The reduced transfer function can also be expan-
ded in the form of Eq. (12), i. e.

Bf»szj—z.Hl——l—gi’—?é—Bi’l':lL!—t’_ (15)
= Bu
hi= Biag (16)

Letting the first / coefficient %, and 4} of these
two series be identical, then the parameters B,
Bz -+ ,B;,; of the numerator of the reduced
model cna be solved from the first / terms of Eqs.
(14) and (16).

Example 1

In order to examine the system which has a
multiple pole, consider the fifth-order transfer
function as follows:

G(s)=

The parameters of Eq. (17) are listed as follows:

2
S+ 125" + 5553+ 12052+ 1245 + 48 =2 Gihy

5
&i
12354'1’:‘. an

n=2, g=1000,
2=0.1,
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=1, g=02,

=3, =100,

ps=4, g=200.
The power contribution of each dynamic mode p,
of the transfer function G(s) is given in Table 1.
By preserving the dynamic modes, g/s+p, and
gs/s+ ps, the denominator can be expressed as

R(s)=But Besy. (18)
The parameters B,, and B,, are obtained from
Egs. (13) through (16). The reduced model is

2.6135+9.369

C="16s+8 (19)

The unit step responses of the original system and
the reduced order model are shown in Fig. 1.
From the graph it can be seen that R(s) is good
approximation to (G(s)-

Example 2

In order to examine the system which has multi-
ple complex poles, consider the following sixth-
order transfer function :

20.55%+ 15354+ 458.25%+ 733.452+633.25 + 246.4

Gls) = 0 T 3857+ 7257+ 9257+ 685 + 24
—_ & &2 £ &4 &5 Lo 20
sHo  GHnY st GHaFE st s+he (20)
where as the sum for each conjugate pair.
p=—1—i, @=50 From the table, since the power contributions
1 ) g; :0.0’5 0051 of the dynamic modes g/s+ p, gs/s+ ps and g5/
b= =14+, =50 ’ s+ ps are dominant, the reduced model can be
- > 3— -\
2,=0.05—0.057,
p5=2, g5=100, 15
pe=3, 2=0.5,

where p,, ps, g and g, are complex numbers.

The power contribution of each dynamic mode
of the transfer function G(s) is given in Table 2.
The power contributions of g/s+p, and gy/s
+ ps forms a complex conjugate.

Also, the power contributions of g/(s+ p,)*
and g,/(s+ p.)* forms a complex conjugate.
Therefore, their power contributions are defined

Table 1 Power contribution of each dynamic mode

Dynamic mode Power contribution

output

BEEEE : original system
aastee : reduced modet

0.5

T [ T T T T [ 7§ 17

P R | L
04! T6 20 30 40 B3 60
Time (Seconds)
Fig. 1 Unit step responses of the original system and

the reduced model

Table 2 Power contribution of each dynamic mode

sf.lpl 3040.625 (82.004%) Dynamic mode Power contribution
zgf;j, 0.703 ( 0.019%) 5 f‘ oS f* o 56.364 (62.614%)

2 7.989 ( 0.215%) T%f, (s%}mz 0.334 ( 0.371%)

- fm 245.778 ( 6.629%) . fsps 31.140 (34.593%)

?%75 412.760 (11.132%) T—fsﬁ 2.180 ( 2.422%)
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expressed as

Bs1+ Bys + Bzas?
RO= g en

The parameters B,,, B;, and B,; are obtained
from Egs.(13) through (16). The reduced model is

_ 20.385%+50.7815+41.068
7457+ 65+4

G(s)

(22)

The unit step responses of the original system and
the reduced order model are shown in Fig. 2.
Example 3

This to compare the
responses of the reduced order model obtained by
this method with the responses of reduced models
obtained by Chen et al. (1980) and Shamash
(1975), and to examine the system which has a
pole at the origin. Consider the fifth-order trans-

example is chosen

fer function as follows:

G(s)_ 14.25*+94.85°4+202.25%+ 146.85 +24
- s34+ 105+ 3553+ 5052+ 245

~Lic), (23)
where
4

(5)=3—& 24

Go)= 24 (24)

The parameters of Eq. (24) are listed as follows:
n=1 =02,
=2, g=2.0,
»=3 &=10,
=4, g=100.

The power contribution of each dynamic mode p,
of the transfer functin G’(s) is given in Table 3.
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Fig. 2 Unit step responses of the original system and
the reduced model

By preserving the dynamic modes corresponding
to p, and p,, the denominator of the reduced
model can be expressed as

Bz,l +Bz_2$ 1
8+6s5+s% 5 (25)

The parameter B,, and B,, can be solved from
Egs. (13) through (16). The reduced model is

R(s)=

Ris)— 1325432266 1
ST 65 +8 s

142674 38.2665 + 8
T %4657+ 8s

(26)

The reduced order models of the same original
system as that treated by Chen et al. and Shamash
are given as follows:

_4.874595+2.82213 1
R(S) =7 145775 70,6907 + 5

(by Chen et al.)

_9.2285+8067 1
R(s)= s*+3s+2 s

(by Shamash)
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. L
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r &ftvid 1 present model
49000 ¢ Ey Chen et ol
4.0 #irirt ¢ by Shamosh
20
L { L | L 1 L 1 3 1 L
0% T6 T 26 30 &6 50 80
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Fig. 3 Unit step responses of the original system and
the reduced models

Table 3 Power contribution of each dynamic mode

Dynamic mode Power contribution
sflin‘ 0.603 ( 2.396%)
E_fzz; 4.867 (19.330%)
?f%; 2.045 ( 8.123%)
;-%ij 17.662 (70.151%)
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Fig. 4 Unit impulse responses of the original system
and the reduced models
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Fig. 5 Spectral density functions of the original
system and the reduced models

The unit step responses of the original system and
the reduced order model of this method and other
methods (by Chen et al. and Shamash) and their
impulse responses are shown in Figs. 3 and 4,
respectively. Also, their power spectral density
function G’,,(f) of which the transfer function G’
(s) is generated by removing the term 1/s, is
shown in Fig. 5 where input signals are assumed
to be white noises. It can be said that the present
method gives better approximation to the orginal
system than other methods.

4. Conclusion

The method of model reduction based on dis-

persion analysis and the continued fraction is
extended to treat the system which has multiple
poles, or has simple or multiple poles on the
imaginary axis. The power contribution based on
power spectral density function is used for order
reduction. By discarding the dynamic modes with
small power contributions, the denominator of
the reduced model is obtained. The continued
fraction method is used to determine the numera-
tor of the reduced model.

Since the power contribution of each dynamic
mode is easily obtained through arithmetic calcu-
lation, it is computationally easy to program.
Through examples, this method is known to give
better approximation to the original system than
other methods and to be able to treat the system
which has multiple poles, and simple or multiple
poles on the imagniary aixs.
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